Formation and Organometallic Reactivity of Iridium(1) Octaethylporphyrin Dimer

Kenneth J. Del Rossi and Bradford B. Wayland*

Department of Chemistry and The Laboratory for Research on The Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, U.S.A.

Iridium(II) octaethylporphyrin dimer, $[Ir(OEP)]_2$, has been prepared by photolysis of (OEP)IrCH₃ in C₆D₆ solvent, and found to undergo alkene insertion and oxidative addition of alkyl C–H bonds.

Iridium(II) octaethylporphyrin dimer, $[Ir(OEP)]_2$ (1), is the exclusive metalloporphyrin product that results from photolysis (λ 350 nm) of (OEP)IrCH₃⁻¹ in C₆D₆ solvent (reaction 1).[†] Photohomolytic cleavage of the Ir–CH₃ bond² is shown to be an important pathway by the observed trapping of methyl radicals by C₆D₆ solvent to form CH₃C₆D₅ and CH₃D (Figure 1).³ The ¹H n.m.r. and electronic spectra for compound (1) are analogous to the spectra previously reported for [Rh(OEP)]₂,⁴ and are uniquely characteristic of metal–metal bonded octaethylporphyrin dimers (Figures 1 and 2).⁵

There is only one previous report of a compound that contains an unsupported Ir^{IL} -Ir^{II} bond,⁶ and reactions involving the metal-metal bond have not been reported. Several of the key organometallic reactions of $[Ir(OEP)]_2$ have been evaluated, including oxidative addition of H₂ and alkyl C-H bonds, and alkene insertion (reactions 2—6).^{7†} The organometallic products from reactions (3) and (4) were separated from reaction mixtures by t.l.c. (silica), and characterized by ¹H n.m.r., i.r., and mass spectroscopy. (OEP)Ir(H) produced

 \ddagger Reactions were performed at 25 °C in C₆D₆ solvent with a slight excess of reagent, unless otherwise stated.

in reactions (4) and (5) reacts with excess of aldehyde to form α -hydroxyalkyl complexes (OEP)IrCH(OH)R (R = H, CH₃).§ (OEP)IrCH₂CH(OEt)Ir(OEP) was characterized by the exceptionally high field proton chemical shifts and a pattern of proton coupling constants consistent with an approximate *trans* arrangement of (OEP)Ir units; see structure (A): ¹H n.m.r. (C₆D₆) δ - 1.14 (3H, t, ³J_{HH} 6.6Hz,

(OEP)IrCH(OH)Me: ¹H n.m.r. (C_6D_6) δ 9.93 (4H, s, porphyrin –CH=), 3.94 (16H, m, CH₂Me), 1.87 (24H, t, CH₂Me), -3.25 [1H, p, ³J_{HH} 5.3 Hz, CH(OH)Me], -4.16 [3H, d, CH(OH)Me], and -4.73 (1H, d, OH).

(OEP)IrCH₂OH: ¹H n.m.r. (C₆D₆) δ 9.94 (4H, s, porphyrin –CH=), 3.92 (16H, m, CH₂Me), 1.88 (24H, t, CH₂Me), -2.95 (2H, d, ³J_{HH} 7.3 Hz, CH₂OH), and -5.30 (1H, t, CH₂OH); ¹³CH₂OH compound: CH₂OH becomes dd, ¹J_{CH} 157.3, ³J_{HH} 7.3 Hz, and OH m, ²J_{CH} 5.2 Hz.

(OEP)IrCH₂CH(OEt)Ir(OEP): ¹H n.m.r. (C₆D₆) δ 9.20 and 8.99 (total 8H, s, poprhyrin -CH=), 3.92 and 3.73 (total 32H, overlapping m, CH₂Me), and 1.72 (48H, t, CH₂Me): see text for bridging CH₂CH(OEt).

[†] In a typical photoreaction, a solution composed of (OEP)IrCH₃ (2 mg) and C₆D₆ (0.3 ml) was sealed *in vacuo* in a Pyrex container, and irradiated for 180 h in a Rayonet Photochemical Reactor equipped with RPR-3500 Å lamps. The quantum yield for this process was determined to be 0.018 ± 0.005 (310 $\leq \lambda \leq 410$ nm).

[§] Spectroscopic data: (OEP)IrCH₂Ph: 1 H n.m.r. (C₆D₆) δ 9.75 (4H, s, porphyrin –CH=), 6.23 (1H, t, Ph *p*-H), 5.68 (2H, t, Ph *m*-H), 3.87 (16H, q, CH₂Me), 2.94 (2H, d, Ph *o*-H), 1.87 (24H, t, CH₂Me), and -4.25 (2H, s, CH₂Ph); *m*/z 816/814 (*M*⁺).

⁽OEP)IrCH₂C(:O)H: ¹H n.m.r. (\dot{C}_6D_6) δ 10.07 (4H, s, porphyrin –CH=), 3.93 (16H, m, CH₂Me), 3.79 [1H, t, C(:O)H], 1.88 (24H, t, CH₂Me), and –4.68 (2H, d, ³J_{HH} 4.4 Hz, CH₂CHO); v_{CO} (KBr) 1693 cm⁻¹.

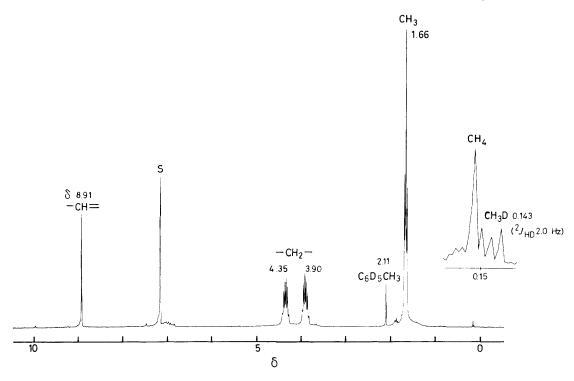
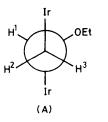
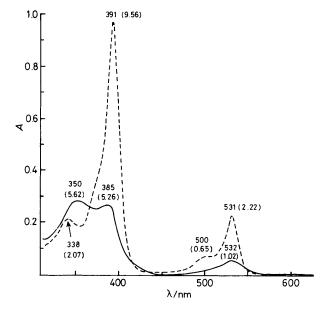


Figure 1. ¹H N.m.r. spectrum of [Ir(OEP)]₂ formed in situ by photolysis of (OEP)IrCH₃ in C₆D₆.

OCH₂Me), -10.92 (1H, d, $J_{1,3}$ 9.45 Hz, H¹), -10.11 (1H, t, H³), and -8.63 (1H, d, $J_{2,3}$ 10.5 Hz, H²); $J_{1,2} \le 1.5$ Hz.§

 $2(OEP)IrCH_3 + C_6D_6$


$$\xrightarrow{hv} [Ir(OEP)]_2 + CH_3D + CH_3C_6D_5 \quad (1)$$
(1)


(1) +
$$H_2 \xrightarrow{200 \text{ Torr}} 2 \text{ (OEP)IrH}$$
 (2)

(1) + CH₃Ph (neat)
$$\xrightarrow{120 \,^{\circ}\text{C}}$$
 (OEP)IrH +
(OEP)IrCH₂Ph (3)

- (1) + CH₃C(O)H \longrightarrow (OEP)IrH + (OEP)IrCH₂C(O)H (4)
- $(1) + CH_2O \longrightarrow 2 (OEP)IrH + CO$ (5)

(1) + CH₂=CH(OEt)
$$\longleftrightarrow$$

(OEP)IrCH₂CH(OEt)Ir(OEP) (6)

Figure 2. Electronic spectra in C₆H₆ for a 5.1 × 10⁻⁵ M solution of $[Ir(OEP)]_2$ (-----) formed *in situ* by photolysis of a 1.02 × 10⁻⁴ M solution of (OEP)IrCH₃ (---), with λ_{max} values (and ε values in parentheses).

Reactions (2)—(6), which are analogous to previously reported reactions of $[Rh(OEP)]_{2,^{4,7,8}}$ probably proceed through the intermediacy of the metallo-radical, (OEP)Ir[•], formed by homolytic dissociation of the Ir^{II}-Ir^{II} bond. Selective reaction with methyl C-H bonds in toluene is compatible with a metallo-radical mechanism in analogy with the reactions of organic radicals with toluene.⁹

Reaction of (1) with acetaldehyde selectively produces the

β-formyl complex, (OEP)IrCH₂C(O)H, which corresponds to the net activation of the stronger methyl C–H bond ($D_{C-H} \approx$ 95 kcal/mol:1 kcal = 4.184 kJ) in preference to the weaker aldehydic C–H bond ($D_{C-H} \approx$ 86 kcal/mol).¹⁰ Several examples of ketone alkyl α-CH bond reactivity with transition metals are known,^{11–13} but aldehydes have invariably reacted with metallo species at the aldehydic C–H bond.^{13,14} We believe that this unusual example of C–H bond reactivity occurs through a kinetic pathway which utilizes the enol form of acetaldehyde [CH₂=CH(OH)]. Addition of (1) to CH₂=CH(OH), by the metallo-radical mechanism proposed by Halpern for [Rh(OEP)]₂,⁷ would produce an intermediate bridging complex, (OEP)IrCH₂CH(OH)Ir(OEP), and subsequently eliminate (OEP)IrH (reaction 7). Plausibility for the

$$(1) + CH_2 = CH(OH) \rightarrow '(OEP)IrCH_2CH(OH)Ir(OEP)' \rightarrow (OEP)IrCH_2C(O)H + (OEP)IrH$$
(7)

intermediate addition product is established by reaction (6) in which the bridging complex, (OEP)IrCH₂CH(OEt)Ir(OEP), is stabilized by substituting an ethoxy group for the hydroxy unit.

Current studies of this system are focused on more detailed kinetic-mechanistic studies of reactions (2)---(6).

This work was supported by the National Science Foundation.

Received, 10th July 1986; Com. 954

References

- 1 H. Ogoshi, J. Setsune, and Z. Yoshida, J. Organomet. Chem., 1978, 159, 317.
- 2 M. Hashino, K. Yasufuku, H. Seki, and H. Yamazaki, J. Phys. Chem., 1985, 89, 3080.
- 3 M. J. Perkins, in 'Free Radicals,' vol. II, ed. J. K. Kochi, Wiley, New York, 1973, p. 231.
- 4 J. Setsune, Z. Yoshida, and H. Ogoshi, J. Chem. Soc., Perkin Trans. 1, 1982, 983.
- 5 J. P. Collman, C. E. Barnes, and L. K. Woo, *Proc. Natl. Acad. Sci. U.S.A.*, 1983, **80**, 7684.
- 6 P. G. Rasmussen, J. E. Anderson, O. H. Bailey, and M. Tamres, J. Am. Chem. Soc., 1985, 107, 279.
- 7 R. S. Panonessa, N. C. Thomas, and J. Halpern, J. Am. Chem. Soc., 1985, 107, 4333.
- 8 K. J. Del Rossi and B. B. Wayland, J. Am. Chem. Soc., submitted for publication; B. B. Wayland and K. J. Del Rossi, J. Organomet. Chem., 1984, 276, C27; K. J. Del Rossi and B. B. Wayland, J. Am. Chem. Soc., 1985, 107, 7941.
- 9 'Frontiers of Free Radical Chemistry,' ed. W. A. Pryor, Academic Press, New York, 1980, p. 355.
- 10 J. I. Brauman in ref. 9, p. 23.
- 11 S. D. Ittel, C. A. Tolman, A. D. English, and J. P. Jesson, J. Am. Chem. Soc., 1978, 100, 7577.
- 12 M. A. Bennett, G. B. Robertson, P. O. Whimp, and T. Yoshida, J. Am. Chem. Soc., 1973, 95, 3028.
- 13 R. Grigg, A. Abeysekera, J. Trocha-Grimshaw, and V. Viswanatha, J. Chem. Soc., Perkin Trans. 1, 1977, 1395.
- G. Wilkinson, C. J. Nyman, and M. C. Baird, J. Chem. Soc. A, 1968, 348; J. W. Suggs, J. Am. Chem. Soc., 1978, 100, 640; C. A. Tolman, S. D. Ittel, A. D. English, and J. P. Jesson, *ibid.*, 1979, 101, 1742; T. B. Rauchfuss, J. Am. Chem. Soc., 1979, 101, 1045.